工業區不同粒徑之懸浮微粒化學成分及其氧化潛勢探討

The atmospheric chemical composition and oxidative potential on different particle sizes in industrial area

陳芝郁¹、練建國¹、張書豪²、蕭大智³、丁育頡³、 周崇光⁴、范潤薈⁵、紀凱獻^{1*} ¹國立陽明交通大學 環境與職業衛生研究所 ²國立中央大學 環境工程研究所 ³國立台灣大學 環境工程學研究所 ⁴中央研究院 環境變遷研究中心 ⁵環境檢驗所 第五組

*通訊作者 Tel: +886-28267352, E-mail: khchi@nycu.edu.tw

摘要

氧化壓力 (Oxidative Stress) 是懸浮微粒 (Particulate matter, PM) 影響人體健康的機制之一,氧化潛勢 (Oxidative Potential, OP) 通常用於量化 PM 相關的活性氧物質 (Reactive Oxygen Species, ROS),並與 PM 健康影響有關。國內 AQI 指標僅針對一次污染物 (PM $_{10}$ 、CO、SO $_{2}$ 、NO $_{2}$) 及衍生性污染物 (PM $_{2.5}$ 、O $_{3}$) 進行測量,而戴奥辛及金屬等同樣也會造成健康危害,因此本研究採用化學氧化壓力方法二硫蘇糖醇 (Dithiothreitol, DTT) 試驗,評估不同粒徑之懸浮微粒所造成的氧化傷害,以釐清微粒環境濃度及貢獻來源所造成的健康危害。

本研究於北部工業區同時採集不同粒徑之懸浮微粒,在 2022 年夏季之總懸浮微粒 (Total Suspended Particulate, TSP)、 $PM_{2.5}$ 及 $PM_{1.0}$ 平均濃度分別為 37.5、21.4 及 8.34 $\mu g/m^3$, $PM_{1.0}/PM_{2.5}$ 比值為 0.39,冬季之 TSP、 $PM_{2.5}$ 及 $PM_{1.0}$ 平均濃度分別為 96.5、30.3 及 16.0 $\mu g/m^3$, $PM_{1.0}/PM_{2.5}$ 比值為 0.53, $PM_{1.0}$ 佔比較夏季高,由此推測與冬季人為活動增加有關。水溶性陰陽離子 (Water Soluble Ions, WSIs) 之 TSP、 $PM_{2.5}$ 及 $PM_{1.0}$ 平均濃度分別為 8.76、5.58 及 4.21 $\mu g/m^3$, $PM_{1.0}/PM_{2.5}$ 比值為 0.72,其中三者皆以 $PM_{1.0}$ 平均濃度最高,在 $PM_{1.0}$ 中佔 62.0%。

氧化潛勢結果以 OP_V (體積歸一化)及 OP_M (質量歸一化)表示之, OP_V 反映了人體暴露的風險,而 OP_M 反映了 $PM_{2.5}$ 的固有毒性。結果顯示,在 2022 年夏季,TSP、 $PM_{2.5}$ 及 $PM_{1.0}$ 之平均 OP_V 分別為 0.96、0.38 及 0.54 nmol/min/m³,TSP 之暴露風險最高,其次是 $PM_{1.0}$ 及 $PM_{2.5}$,儘管 $PM_{1.0}$ 之微粒濃度較 $PM_{2.5}$ 較低,但暴露風險卻較高。TSP、 $PM_{2.5}$ 及 $PM_{1.0}$ 之平均 OP_M 分別為 26.8、18.6 及 67.6 pmol/min/ μ g, $PM_{1.0}$ 之固有毒性最高,其次為 TSP 及 $PM_{2.5}$,表明單位質量 $PM_{1.0}$ 中能夠催化產生 ROS 的成分比例較高。

關鍵字:細懸浮微粒、二硫蘇糖醇試驗、氧化潛勢 **Key Word**: PM_{1.0}, PM_{2.5}, DTT assay, Oxidative potential