以超短波紫外光/H₂O₂ 光氧化程序處理含有機污染物水溶液反應 行為之研究

Study on Photodecomposition of Organic Pollutants in an Aqueous UVC/H₂O₂ Process

<u>林志鴻 ^{1,2}</u>, 申永順 ¹, 黃丙守 ¹ ¹行政院環境保護署環境檢驗所 chihhung.lin@epa.gov.tw ²大葉大學環境工程系

摘要

本研究以 185nm 紫外線,且添加過氧化氫之操作情形下,探討不同水溶液 pH 值條件對含芳香族有機污染物(酚、4-氯酚及 4-硝基酚)水溶液處理效果之影響,同時提出可能提出的光化學反應行為。實驗發現,在 185nm/UV/ H_2O_2 程序中,酚及 4-硝基酚去除的貢獻(即 θ_3),主要來自 H_2O_2 照光產生的間接氧化,在中性及酸性範圍時,平均分別都在 88%及 83%以上,而來自 O_2 受光激發而產生的 OH·對污染物間接氧化之貢獻(即 θ_1)則幾乎在 5%以下,顯見此系統下 O_2 並非 OH·的主要來源(表 1)。對於 4-氯酚而言,則發現 θ_2 和 θ_3 的貢獻率很接近(除 pH=3 時),顯示 4-氯酚的分解不只是因 H_2O_2 照光產生氫氧自由基的間接氧化,也有相當部分(約 40%至 50%)會因直接光解與照水產生氫氧自由基的間接氧化得到去除。另研究也發現,各酚類化合物之分解速率常數均隨 pH 值之升高而降低,此係因 H_2O_2 的 pKa 為 11.6,溶液愈偏鹼性, H_2O_2 會有鹼催化作用,減少 OH·產生的機會,故在鹼性下反應速率會降低。各酚類化合物間之反應速率以 4-氯酚最高,此可間接推測在苯環基上之取代基中,C-Cl 鍵比 C- NO_3 鍵與 C-H 鍵較易被 OH·攻擊斷 20、致使分子破壞。綜上,研究結果顯示在應用 21 22 22 程序處理有機污染物時,有機物的光化學特性可能會影響光氧化進行機制的比例。

關鍵字:超短波紫外光/H₂O₂、酚、4-氯酚、4-硝基酚、高級氧化程序

Keywords: 185nm UV/ H_2O_2 · phenol · p-chlorophenol · p-nitrophenol · advanced oxidation processes

рН	酚			4-硝基酚			4-氯酚		
	θ_1	θ_2	θ_3	θ_1	θ_2	θ_3	θ_1	θ_2	θ_3
3	5.0%	5.5%	89.5%	1.8%	2.7%	95.4%	12.3%	18.6%	68.9%
5	3.2%	3.8%	92.9%	4.9%	7.2%	87.8%	11.5%	42.0%	46.4%
7	6.3%	5.7%	87.8%	6.8%	9.2%	83.9%	4.1%	48.5%	47.2%
9	4.%	7.6%	88.3%	5.2%	17.3%	77.4%	2.7%	46.6%	50.5%
11	28.6%	27.0%	44.2%	4.7%	23.8%	71.4%	2.6%	50.0%	47.4%

表 1 UV/H₂O₂ 系統中各氧化驅動力對污染物分解之個別貢獻率

註:θ₁=由 O₂ 受光激發而產生的 OH·對污染物間接氧化之貢獻

 θ_2 =UV 直接光解加上由水受光激發而產生的 OH·間接氧化二者對污染物之貢獻 θ_3 =由 H_2O_2 受光激發而產生的 OH·對污染物間接氧化之貢獻