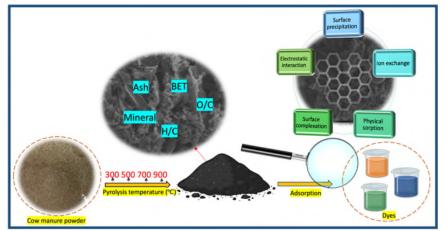
淨零排放

焚燒溫度對牛糞生物炭的影響:物理化學特性及其對有機染料吸附 行為的研究

Pyrolysis temperature effect on biochar-derived cow manure: physicochemical properties and adsorption behavior toward organic dves

Quoc-Hoang Do^{a,1}, Thanh-Binh Nguyen^{b,1}, Chiu-Wen Chen^{a, b}, <u>Cheng-Di Dong</u>^{a, b}, *****


 ^a Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
^b Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
¹Equal contribution

* Correspondence Email: <u>cddong@nkust.edu.tw</u> (C.D. Dong)

Abstract:

Utilizing cow manure-derived biochar (CMBC) pyrolyzed at temperatures of 300, 500, 700, and 900 °C, this study examines the impact on physicochemical properties and the adsorption efficiency towards methylene blue (MB) and methyl orange (MO). CMBC900 displayed superior adsorption capacities, reaching 200 mg g⁻¹ for MB and 147 mg g⁻¹ for MO. When a dye mixture was tested, CMBC900 showed slightly lower capacities of 104.5 mg g⁻¹ for MB and 98.7 mg g⁻¹ for MO, indicating competitive adsorption. Surface analysis revealed key functional groups like - COOH, C=O, and C-O, integral to the adsorption mechanism. The reusability of CMBC was also notable, maintaining up to 97.51% efficiency for MB and 90.50% for MO after ten cycles. This research highlights the potential of high temperature pyrolyzed CMBC as an effective and sustainable adsorbent for dye remediation in wastewater.

Keywords: Cow manure; Biochar; Pyrolysis temperature; Dye wastewater treatment

Graphic abstract